
Calculus 1
Final Exam – Solutions
November 1, 2024 (8:30 – 10:30)

1) Apply L’Hospital’s Rule to evaluate the limit lim
x→0

arcsin(2x)− 2 arcsinx

x3
. Indicate the results (e.g.

limit laws, continuity, differentiation rules) used in each step.

Solution. The limit L has an indeterminate form of type “0/0” since arcsin 0 = 0 and 03 = 0. Thus we
can directly apply l’Hospital’s Rule to get

L = lim
x→0

arcsin(2x)− 2 arcsinx

x3

l’H
= lim

x→0

(arcsin(2x)− 2 arcsinx)′

(x3)′
= lim

x→0

2√
1− (2x)2

− 2√
1− x2

3x2
.

Above we used the Difference Rule, the Chain Rule, the Constant Multiple Rule, the Inverse Rule (as in
(arcsinx)′ = (1 − x2)−1/2), the Power Rule. The limit on the right-hand side is also of type “0/0”. So
we may apply l’Hospital’s Rule again to obtain

lim
x→0

2√
1− (2x)2

− 2√
1− x2

3x2

l’H
= lim

x→0

(
2√

1− (2x)2
− 2√

1− x2

)′

(3x2)′
= lim

x→0

8x

(1− (2x)2)3/2
− 2x

(1− x2)3/2

6x
.

Here we used the Difference Rule, the Constant Multiple Rule, the Chain Rule, and the (Generalized)
Power Rule. Finally, after cancelling the common factors of x in the numerator and denominator, the
resulting limit can be evaluated by Direct Substitution. We find that

L = lim
x→0

8

(1− (2x)2)3/2
− 2

(1− x2)3/2

6
=

8

(1− 02)3/2
− 2

(1− 02)3/2

6
=

8− 2

6
=

6

6
= 1.

Therefore the limit in question is equal to 1.

2) Use Taylor Series to find a and b such that lim
x→0

(
sin 4x

x3
+

a

x2
+ b

)
= 0.

Solution. The Taylor series expansion of sinα around α = 0 is

sinα = α− α3

3!
+

α5

5!
− . . .

By substituting α = 4x we obtain

sin 4x = 4x− (4x)3

3!
+

(4x)5

5!
− · · · = 4x− 32x3

3
+

128x5

15
− . . .

Therefore

b+
a

x2
+

sin 4x

x3
= b+

a

x2
+

4x

x3
− 32x3

3x3
+

128x5

15x3
− · · · = b+

a

x2
+

4

x2
− 32

3
+

128x2

15
− . . .

Note that all terms having positive powers of x tend to zero as x → 0. Hence the limit is determined
by the constant term b − 32/3 and terms with x−2 in them. The former has itself as the limit, i.e.
lim
x→0

(b− 32/3) = b− 32/3, whereas the latter, that is (a+4)x−2 has an infinite limit as x → 0 unless the

coefficient a+ 4 is zero. Therefore the original limit is zero if and only if

b− 32

3
= 0 and a+ 4 = 0
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or, equivalently,

a = −4 and b =
32

3
.

To conclude, we have lim
x→0

(
sin 4x

x3
+

a

x2
+ b

)
= 0 if and only if a = −4 and b = 32/3.

3) Use integration to find the area of the surface obtained by rotating the ellipse
(x
a

)2
+
(y
b

)2
= 1 about

the x-axis (a, b are positive constants).

Solution. We obtain the surface by rotating the graph of the function f(x) = b
√

1−
(
x
a

)2
, −a ≤ x ≤ a

about the x-axis. The surface area is given by the definite integral A =
r a

−a
2πf(x)

√
1 + [f ′(x)]2 dx. Let

us first compute the integrand f(x)
√
1 + [f ′(x)]2. We find that

f ′(x) =
−bx/a2√
1− (x/a)2

⇒ [f ′(x)]2 =
(b/a)2(x/a)2

1− (x/a)2
⇒ 1 + [f ′(x)]2 =

1 + [(b/a)2 − 1](x2)2

1− (x/a)2

⇒
√
1 + [f ′(x)]2 =

√
1 + [(b/a)2 − 1](x/a)2√

1− (x/a)2
⇒ f(x)

√
1 + [f ′(x)]2 = b

√
1 + [(b/a)2 − 1](x/a)2.

Therefore the area is
A = 2πb

w a

−a

√
1 + [(b/a)2 − 1](x/a)2 dx.

Depending on the sign of (b/a)2 − 1 this integral is one of three basic forms:

w √
1− u2 du,

w
1 du,

w √
1 + u2 du.

Note that a and b are positive and therefore the three cases can be distinguished as follows:

(b/a)2 − 1 < 0 iff b < a, (b/a)2 − 1 = 0 iff b = a, (b/a)2 − 1 > 0 iff b > a.

If b = a, then A = 2π
r a

−a
a dx = 4πa2 (as expected; in this case the surface is a sphere of radius a).

If b < a, then denote e :=

√
1−

(
b
a

)2
and substitute u = ex

a
to get x = a

e
u and dx = a

e
du, and the

limits of integration change to −e and e. Therefore we obtain

A =
2πab

e

w e

−e

√
1− u2 du.

The trigonometric substitution u = sin θ (
√
1− u2 = cos θ, du = cos θ dθ) lets us evaluate the integral

w √
1− u2 du =

w
cos2 θ dθ =

w 1 + cos 2θ

2
dθ =

θ

2
+

sin 2θ

4
=

θ + sin θ cos θ

2
=

arcsinu+ u
√
1− u2

2

and find that

A =
2πab

e

(
b

a
e+ arcsin e

)
, where e :=

√
1−

(
b

a

)2

.

If b > a, then denote e :=

√(
b
a

)2 − 1 substituting u = ex
a
yields x = a

e
u and dx = a

e
du, and the limits

of integration change to −e and e. Therefore we obtain

A =
2πab

e

w e

−e

√
1 + u2 du.
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The hyperbolic substitution u = sinh t (
√
1 + u2 = cosh t, du = cosh t dt) lets us evaluate the integral:

w √
1 + u2 du =

w
cosh2 t dt =

w 1 + cosh 2t

2
dt =

t

2
+
sinh 2t

4
=

t+ sinh t cosh t

2
=

arsinh u+ u
√
1 + u2

2

and therefore

A =
2πab

e

(
b

a
e+ arsinh e

)
, where e :=

√(
b

a

)2

− 1.

4) Evaluate the definite integral
w π

0

1

2 + cos x
dx.

Solution. Let I denote the integral. The integrand is a rational function in sinx and cosx so we
may simplify it by using the tangent half-angle substitution u = tan(x/2). This results in cosx =
(1 − u2)/(1 + u2), dx = 2/(1 + u2) and the limits of integration change accordingly: if x = 0, then
u = tan(0) = 0 and if x → π−, then u = lim

x→π−
tan(x/2) = ∞. Therefore the substitution yields an

improper integral

I =

∞w

0

1

2 + 1−u2

1+u2

2

1 + u2
du =

∞w

0

2

2 + 2u2 + 1− u2
du =

∞w

0

2

3 + u2
du =

2

3

∞w

0

1

1 +

(
u√
3

)2 du.

Substituting t = u/
√
3 (u =

√
3 t, du =

√
3 dt) turns this integral into the basic inverse tangent integral

(with the same lower and upper limits), that is

I =
2

3

∞w

0

1

1 + t2

√
3 dt =

2√
3

∞w

0

1

1 + t2
dt =

2√
3
lim
b→∞

bw

0

1

1 + t2
dt =

2√
3
lim
b→∞

[arctan t]t=b
t=0.

In the last step, we used the Fundamental Theorem of Calculus. Finally, we obtain

I =
2√
3

[(
lim
b→∞

arctan b
)
− arctan 0

]
=

2√
3

[π
2
− 0
]
=

2√
3

π

2
=

π√
3
.

The integral in question is therefore I =
π√
3
.

5) Solve the initial value problem y′(x) + (cos x)y(x) = 2xe− sinx, y(π) = 0.

Solution. This is a first-order linear ODE and as such it can be solved using an integrating factor. The
equation is of the form y′ + P (x)y = Q(x) with P (x) = cosx and Q(x) = 2xe− sinx. Therefore the
integrating factor can be written as

I(x) = e
r
P (x) dx = e

r
cosx dx = esinx.

Multiplying both sides of the ODE by I(x) yields

esinxy′ + esinx(cosx)y = 2x.

The left-hand side is the derivative of esinxy therefore we get

(esinxy)′ = 2x.

Integrating both sides with respect to x we obtain

esinxy =
w
2x dx.
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The integral on the right-hand side can be evaluated using the Power Rule. Thus we get
w
2x dx = x2 + C.

Therefore the general solution of the ODE y′ + (cosx)y = 2xe− sinx is

y(x) = e− sinx(x2 + C).

Setting x = π yields
y(π) = e− sinπ(π2 + C) = e0(π2 + C) = π2 + C

which, when compared to the initial value y(π) = 0, implies that C = −π2. In summary, the solution of
the initial value problem y′(x) + (cos x)y(x) = 2xe− sinx, y(π) = 0 is

y(x) = e− sinx(x2 − π2).

6) Solve the following initial value problem

y′′(x) + 2y′(x) + 5y(x) = 0, y(0) = 0, y′(0) = 2.

Solution. Looking for the solution in the form of an exponential function y(x) = erx, as we’ve done in
class, we get the following auxiliary equation for the unknown coefficient r:

r2 + 2r + 5 = 0.

The quadratic formula yields two complex roots:

r1,2 =
−2±

√
22 − 4 (1) (5)

2 (1)
=

−2±
√
−16

2
= −1± 2i.

Thus the two independent solutions are of the following form

y1(x) = er1x = e(−1+2i)x = e−xei(2x), y2(x) = er2x = e(−1−2i)x = e−xe−i(2x).

Using Euler’s formula we can combine these solutions into a general (real function) solution. Namely, by
taking

y(x) = A
y1(x) + y2(x)

2
+B

y1(x)− y2(x)

2i
we get

y(x) = e−x[A cos 2x+B sin 2x],

where A and B are real constants (to be fixed by the initial conditions). Now, the derivative of this
solution is

y′(x) = e−x[(2B − A) cos 2x− (2A+B) sin 2x].

For the initial conditions y(0) = 0, y′(0) = 2 to be satisfied, we must have

y(0) = e0[A cos 0 +B sin 0] = A = 0,

and
y′(0) = e0[(2B − A) cos 0− (2A+B) sin 0] = 2B − A = 2.

Substituting A = 0 into the second condition yields 2B = 2, implying that B = 1. Finally, plugging these
parameter values into the general form yields the solution of the initial value problem:

y(x) = e−x sin 2x.
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